G-protein-koblede receptorer

GPCR er beskrevet som den mest livsnødvendige gruppe proteiner.[1] Forkortelsen står for G-protein–coupled receptor, på dansk G-protein-koblede receptorer. Disse receptorer er prominente medlemmer af en familie af membramproteiner kaldet 7TM - et kort navn for 7 transmembrane receptorer. Dette navn kommer af, at receptormolekylet slynger sig som en slange syv gange gennem cellemembranen (se billederne).

Animeret model af membrandelen af en 7TM receptor, κ-Opioid-receptoren med en antagonist
Krystalstrukturen af den ativerede beta-2 adrenerge receptor (rød) med G-proteiner: Gα (grøn), Gβ (cyan) og Gγ (gul)
En 2-D tegning af en GPCR (perlekæden)i en cellemembran. Hver perle er en aminosyre.
Tegning der viser hvordan binding af en ligand medfører ændringer i konformationen af GPCR, set både udefra og indefra
Strukturen af de to cannabinoide receptorer CB1 and CB2
NMR struktur af bovin rhodopsin

Alle G-protein-koblede receptorer sidder i cellemembranen og er populært sagt cellernes "dørvogtere". Ved binding af en ligand ændrer receptoren konformation og aktiverer et G-protein[2] der udløser et biokemisk, cellulært respons, der kan tage mange veje og omtales som signaltransduktion.[3] Ligander kan være fotoner, smagsstoffer, duftstoffer, hormoner, lægemidler, kemikalier.

Hos mennesket og pattedyr er der en superfamilie af omkring 800 G-protein-koblede receptorer, der på det molekylære niveau tager vare på utallige vigtige reaktioner i og mellem organismens celler.[4] Velkendte eksempler er syns-receptoren rhodopsin og hormonreceptoren for adrenalin. Selv om der ikke synes megen lighed mellem opfattelsen af sansindtryk og hormoners virkning, har de lignende receptorer: 7TM strukturen er fælles med homologi af aminosyresekvensen.

Nobelprisen i kemi blev i 2012 tildelt Brian Kobilka og Robert Lefkowitz for deres arbejde med GPCR og deres funktion.[5][6][7]

Mange funktionerRediger

Mange eksemplerRediger

"The human protein atlas" beskriver 774 humane G-proteinkoblede receptorer[10] her er nogle eksempler:

  • Receptorer for feromoner er lokaliseret i det vomeronasale organ og der er identificeret tre familier af receptorer: V1R (VN1R1; VN1R2; VN1R3; VN1R5), V2R og V3R.
  • CXCR4, chemokin-receptor type 4 er en cytokinreceptor og findes på overfladen af celler i det centrale nervesystem og immunsystemet og vides at være involveret i 23 kræftformer og to immunsygdomme, hvorfor denne receptor er blevet studeret flittigt som mål for lægemidler.[12]
  • CCR5-delta32, CCR5-Δ32 er en meget sjælden mutation af receptoren CCR5, hvor 32 aminosyrer mangler, således at HIV ikke kan binde sig til receptoren og trænge ind i cellerne.[15][16]
  • OR2AT4 er receptor for et syntetisk duftstof kaldet sandalore, som starter en kaskade af molekylære signaler, der synes at inducere reparationen af skadet væv. [8]

Farmaka og GPCRRediger

Meget medicin retter sig mod GPCR og meget forskning drejer sig om GPCR på grund af deres mange vigtige funktioner.

Andre virkningsmekanismer kan være farmaka som enzymhæmmere, der griber ind i en signalvej over en GPCR, som f.eks. aspirin, der hæmmer enzymet cyclooxygenase, der danner de smerte-signallerende molekyler kalder prostaglandiner.

Se ogsåRediger

Eksterne links og henvisningerRediger

  1. ^ "Exploring the Elusive World of Life's Most Vital Proteins. Livescience". Arkiveret fra originalen 11. august 2014. Hentet 14. august 2014. 
  2. ^ "G Proteins. Molecule of the Month. Protein Data Bank". Arkiveret fra originalen 18. januar 2015. Hentet 8. januar 2015. 
  3. ^ Seven-Transmembrane-Helix Receptors Change Conformation in Response to Ligand Binding and Activate G Proteins. Biochemistry
  4. ^ "Exploring the Elusive World of Life's Most Vital Proteins. NIH". Arkiveret fra originalen 5. april 2015. Hentet 8. januar 2015. 
  5. ^ "The Nobel Prize in Chemistry 2012". Arkiveret fra originalen 12. oktober 2012. Hentet 14. august 2014. 
  6. ^ "Cells and sensibility" (PDF). Arkiveret (PDF) fra originalen 8. oktober 2014. Hentet 14. august 2014. 
  7. ^ "Studies of G-protein coupled receptors" (PDF). Arkiveret (PDF) fra originalen 26. september 2014. Hentet 14. august 2014. 
  8. ^ a b "Smell Turns Up in Unexpected Places. The New York Times Science". Arkiveret fra originalen 27. oktober 2014. Hentet 19. oktober 2014.  Fodnotefejl: Ugyldigt <ref> tag; navnet "nyt" er defineret flere gange med forskelligt indhold
  9. ^ "Peptide Hormone G Protein-Coupled Receptors. R&D systems". Arkiveret fra originalen 17. august 2014. Hentet 15. august 2014. 
  10. ^ "G-protein coupled receptors. The human protein atlas". Arkiveret fra originalen 2. april 2015. Hentet 12. marts 2015. 
  11. ^ "Cannabis Receptor May Be More Flexible Than We Originally Thought. IFLScience 2017". Arkiveret fra originalen 9. juli 2017. Hentet 9. juli 2017. 
  12. ^ "Chemokine receptor type 4 (CXCR4): diseases, drugs and druggable target molecules. Protein Focus" (PDF). Arkiveret (PDF) fra originalen 25. september 2015. Hentet 8. januar 2015. 
  13. ^ "CRISPR: En genetisk schweizerkniv, som kan ændre menneskeheden for altid. Information 2018". Arkiveret fra originalen 19. juni 2019. Hentet 19. juni 2019. 
  14. ^ "CRISPR Scientists Slam Methods Used on Gene-Edited Babies. The Scientist 2018". Arkiveret fra originalen 27. juli 2020. Hentet 8. juli 2020. 
  15. ^ "Only 1 Person Has Been Cured of HIV: New Study Suggests Why. Livescience". Arkiveret fra originalen 28. september 2014. Hentet 27. september 2014. 
  16. ^ "Genetic Mutation that Prevents HIV Infection Tied to Earlier Death. The Scientist 2019". Arkiveret fra originalen 1. november 2019. Hentet 4. juni 2019.