Kvadratiske matricer

speciel matrix der har lige mange rækker og søjler
Fig 1: En kvadratisk matrix i vektorrummet . I 4x4-matricen her ovenfor er hoveddiagonalen bestående af a11 = 9, a22 = 11, a33 = 4, a44 = 10.

I matematik er kvadratiske matricer helt enkelt matricer, der har det samme antal rækker og søjler, dvs. de er af typen . Hvis to matricer er i det samme vektorrum, , vil de altid kunne adderes og multipliceres.

HoveddiagonalRediger

Hovedartikel: Hoveddiagonal

Indgangene aii (i = 1, ...., n) danner hoveddiagonalen i en kvadratisk matrix. De ligger på en imaginær linje fra øverste venstre hjørne til nederste højre hjørne. For eksempel er hoveddiagonalen i 4x4-matricen i Fig 1 bestående af a11 = 9, a22 = 11, a33 = 4, a44 = 10.

Diagonalen i en kvadratisk matrix fra øverste højre hjørne til nederste venstre hjørne kaldes antidiagonalen.

Specielle typerRediger

Diagonal eller triangulærmatrixRediger

Hvis alle indgange udover dem, som udgør hoveddiagonalen, er nul, kaldes A en diagonalmatrix. Hvis det kun er indgangene over (eller under) hoveddiagonalen er nul, kaldes A en nedre (eller øvre) triangulærmatrix.

IdentitetsmatrixRediger

En kvadratisk matrice kaldes en identitetsmatrix, hvis alle indgange i hoveddiagonalen er lig 1, mens resten af indgangene er lig 0, f.eks.:

 

Det er en kvadratisk matrix i vektorrummet  , men det er også en speciel type diagonalmatrice. Den kaldes en identitetsmatrix, fordi multiplikation efterlader matricen uændret.

Symmetriske og skæv-symmetriske matricerRediger

En kvadratisk matrix A, der er lig dens transponerede matrice, dvs. A = AT, er en symmetrisk matrix. Hvis A i stedet er lig den negative version af dens transponerede, dvs. A = -AT, så er A skæv-symmetrisk.

Invertible matricer og dens inverseRediger

En kvadratisk matrix A kaldes invertibel eller ikke-singulær, hvis der eksisterer en matrix B, sådan at:

AB = BA = In

Hvis B eksisterer, er den unik og den kaldes for den inverse matrix af A, med notation A−1.

Ortogonal matrixRediger

OperationerRediger

SporRediger

Se artikelen Spor (algebra).
  Tekst mangler, hjælp os med at skrive teksten

DeterminantRediger

Hovedartikel: Determinant

Determinanten det(A) eller |A| af en kvadratisk matrix er et tal, der viser visse egenskaber for matricen. En matrix er invertibel, hvis og kun hvis, determinenten er forskellig fra nul. Dens numeriske værdi er lig med arealet (i R2) og volumen (i R3).

Determinanten af en 2x2-matrice er givet ved: