Euler-Lagrange-ligning: Forskelle mellem versioner

Content deleted Content added
Tag: 2017-kilderedigering
+ Udledning
Tag: 2017-kilderedigering
Linje 2:
 
== Ligningen ==
Givet enet funktional på formen
:<math>J[q_1,...,q_n]=\int_{a}^{b} L(x,q_1(x),...,q_n(x),q'_1(x),...,q_n'(x))dx</math>
da er den første funktional-afledte mht.<math>q_i</math> ved <math>x</math> givet ved:
Linje 12:
:<math>L- q'_i{\partial L\over\partial q'_i}=C_i \quad \forall i</math>
hvor <math>C_i</math> er konstant.<ref name="wolfram">{{Kilde | fornavn = Eric W. | efternavn = Weisstein | titel = Beltrami Identity | udgiver = [[Wolfram Alpha]] | url = http://mathworld.wolfram.com/BeltramiIdentity.html | hentet = 12. juli 2019}}</ref>
 
== Udledning ==
Et funktional på formen
:<math>J=\int_{a}^{b} L(x,q,q')dx</math>
skal stationeres:
:<math>\delta J=\delta\int_{a}^{b} L(x,q,q')dx=0</math>
Variationen i <math>J</math> kan skrives ved variationerne i <math>q</math> og <math>q'</math>:
{{NumBlk|:|<math>\int_{a}^{b} \left[ {\partial L\over\partial q}\delta q+{\partial L\over\partial q'} \delta q' \right] dx=0</math>|{{EquationRef|1}}}}
hvor
:<math>\delta q'\equiv \frac{d}{dt}\left( \delta q \right)</math>
Det kræves desuden, at variationen i hver ende er nul:
{{NumBlk|:|<math>\delta q(a)=\delta q(b)=0</math>|{{EquationRef|2}}}}
Pga. [[Regneregler for differentiation#Differentialkvotienten af produktet af to differentiable funktioner|produktreglen]] gælder:
:<math> \frac{d}{dt}\left( {\partial L\over\partial q'}\delta q \right)= \frac{d}{dt}\left( {\partial L\over\partial q'}\right) \delta q + {\partial L\over\partial q'} \frac{d}{dt}\left( \delta q \right)</math>
Og dermed:
:<math> {\partial L\over\partial q'} \frac{d}{dt}\left( \delta q \right) = -\frac{d}{dt}\left( {\partial L\over\partial q'}\right) \delta q + \frac{d}{dt}\left( {\partial L\over\partial q'}\delta q \right)</math>
Dette indsættes i lign. {{EquationNote|1}}, og integralet splittes op:
:<math>\begin{align}\int_{a}^{b} \left[ {\partial L\over\partial q}\delta q -\frac{d}{dt}\left( {\partial L\over\partial q'}\right) \delta q+\frac{d}{dt}\left( {\partial L\over\partial q'}\delta q \right) \right] dx & =0\\
\int_{a}^{b} \left[ {\partial L\over\partial q}\delta q -\frac{d}{dt}\left( {\partial L\over\partial q'}\right) \delta q \right] dx+\int_{a}^{b} \frac{d}{dt}\left( {\partial L\over\partial q'}\delta q \right) dx & =0\\
\int_{a}^{b} \left[ {\partial L\over\partial q}\delta q -\frac{d}{dt}\left( {\partial L\over\partial q'}\right) \delta q \right] dx+\left[ {\partial L\over\partial q'}\delta q \right]_{a}^{b} & =0\end{align}</math>
Pga. lign. {{EquationNote|2}} gælder:
:<math>\left[ {\partial L\over\partial q'}\delta q \right]_{a}^{b} =0</math>
Derfor:
:<math>\begin{align}\int_{a}^{b} \left[ {\partial L\over\partial q}\delta q -\frac{d}{dt}\left( {\partial L\over\partial q'}\right) \delta q \right] dx & =0\\
\int_{a}^{b} \left[ {\partial L\over\partial q} -\frac{d}{dt}\left( {\partial L\over\partial q'}\right)\right] \left( \delta q \right) dx & =0\end{align}</math>
Integralet består nu af to faktorer. Siden integralet altid skal være nul, og det skal gælde for alle variationer af <math>q</math>, må den første faktor være nul:
{{Equation box 1
|title=
|indent=:
|equation={{NumBlk|:|<math>{\partial L\over\partial q} -\frac{d}{dt}\left( {\partial L\over\partial q'}\right)=0</math>|{{EquationRef|3}}}}
|cellpadding = 6
|border = 1
|border colour = black
|background colour=white}}
Dermed er Euler-Lagrange-ligningen udledt.<ref name="wolfram 2">{{Kilde | fornavn = Eric W. | efternavn = Weisstein | titel = Euler-Lagrange Differential Equation | udgiver = [[Wolfram Alpha]] | url = http://mathworld.wolfram.com/Euler-LagrangeDifferentialEquation.html | hentet = 19. juli 2019}}</ref>
 
== Endimensionelt eksempel ==