Lineær Partiel Information: Forskelle mellem versioner

ingen redigeringsopsummering
No edit summary
No edit summary
'''Lineær partiel information (LPI)''' er en metode til at træffe beslutninger på basis af usikre eller uskarpe informationer (eng: fuzzy information). LPI-[[teori]]en var introduceret i [[1970]] af polsk-schweizisk matematiker [[Edward Kofler]] (1911 - 2007) for at simplificere [http://en.wikipedia.org/wiki/Decision beslutning sprocesser]. I sammenligning med [[Fuzzyhttp://en.wikipedia.org/wiki/Fuzzy_set set|andre metoder]] er LPI simplere [[algorytm]]isk og navnlig under beslutningstagen, mere praktisk orienteret. I stedet for tvivlsomme eller usikre [[sandsynlighed|sandsynlighedsfunktioner]] [[indicator function|(eng: membership functions)]] [[linear]]iserer beslutningstageren enhver uskarphed (eng: fuzziness) ved at etablere lineære grænser for fordeling af uskarpe sandsynligheder eller ved normaliseret vægtangivelse. I LPI processer lineariserer beslutningstageren [[linear|(eng: linearize)]] enhver uskarphed i stedet for at anvende sandsynlighedsfunktioner. Dette bliver gjort ved at bestemme [[stokastisk variabel|stokastiske]] og ikke-stokastiske afhængigheder indenfor LPI. En blandet stokastisk og ikke-stokastisk uskarphedsgørelse (fuzzification) af beslutningsprocessen er oftest grundlæggende for en LPI-proces. Ved at anvende LPI metoder kan der tages hensyn til enhver uskarphed ved at anvende lineær uskarp [[logik]] (eng: fuzzy logic).
 
== Definition ==
278

redigeringer