Forskel mellem versioner af "Mængde"

200 bytes tilføjet ,  for 3 år siden
ingen redigeringsopsummering
m (Tilføjet DTU i universitetsmængden.)
[[Fil:Venn A subset B.svg|thumb|<math>A \subseteq B</math>]]
Vi lader <math>X</math> betegne en mængde.
At et element, <math>x</math>, tilhører mængden skrives <math>x \in X</math> og læses ''x tilhører X''. Eksempelvis tilhører AU førnævnte mængde. Omvendt skrives om et element, <math>y</math>, der ikke tilhører mængden <math>y \notin X</math>. Hvis to mængder <math>X</math> og <math>Y</math> er ens skrives <math>X=Y</math>, og det gælder, banalt nok, at <math>x \in X \Leftrightarrow x \in Y</math>. Gælder en betingelse <math>S(x)</math> for elementerne i <math>X</math> skriver man <math>\forall x \in X =\mid S(x)</math>. Delmængden af en mængde <math>X</math> hvis elementer <math>x</math> opfylder <math>S(x)</math> kan skrives som <math>\{x \in X \mid S(x)\}</math>; eksempelvis kan mængden bestående af kun de [[reelle tal]] -5 og 5 gives ved <math>\{x \mid x \in \mathbb{R}, \mid x^2=25\}</math> eller bare <math>\{-5, 5\}</math>.
 
På samme måde kan man komme ud for at hele mængder er delmængder af andre mængder. Eksempelvis er {RUC,AU} en delmængde af eksempelmængden med universiteterne. Betegnes den første mængde <math>X'</math> og mængden den er en delmængde af <math>X</math> skrives at <math>X' \subseteq X</math> eller (sjældnere) <math>X \supseteq X'</math>, hvis og kun hvis ethvert givet <math>x \in X'</math> også er indeholdt i <math>X</math>. Herved gælder følgende relationer:
 
<math>X = Y \Leftrightarrow [X \subseteq Y</math> og\wedge <math>Y \subseteq X]</math><br />
og at<br />
<math>[X \subseteq Y, \wedge Y \subseteq Z] \Rightarrow X \subseteq Z</math>.
 
Definitionen på ''den tomme mængde'' er givet ved antagelse om, at der findes en mængde <math>A</math> og defineret ved <math>\emptyset = \{x \in A \mid x \not= x\}</math>. Den tomme mængde skrives også <math>\{\}</math>, som værende en mængde uden elementer. Om den tomme mængde gælder, at den er en delmængde af en hvilken som helst given mængde (inklusiv sig selv).
 
== Ordnet mængde ==
 
== Specielle mængder ==
Der eksisterer mængder, der er af så stor matematisk betydning og som refereres så ofte til, at de har fået speciellefaste navne og symboler. En af disse er den omtalte [[tomme mængde]]. Andre specielle mængder inkluderer:
 
<math>\mathbb{N}</math> betegner mængden af alle [[naturlige tal]]. Altså er <math>\mathbb{N} = \{1,2,3,\dots\}</math>, og i nogle tilfælde benyttes også <math>\mathbb{N}_0 = \{0,1,2,\dots\}</math>.
<math>\mathbb{Z}</math> betegner mængden af alle [[heltal|hele tal]], så <math>\mathbb{Z} = \{\dots,-2,-1,0,1,2,\dots\}</math>.
 
<math>\mathbb{Q}</math> betegner mængden af alle [[rationale tal]], så <math>\mathbb{Q} = \{\frac{p}{q} \mid p,q\in \mathbb{Z}, q \not= 0\}</math>. Eksempelvis er alle hele tal indeholdt i denne mængde, daf.eks. demed alle kan opskrives som heltalsbrøker<math>q=1</math>.
 
<math>\mathbb{R}</math> er mængden af alle [[reelle tal]]. Denne mængde er foreningsmængden (se nedenfor) af de rationale tal og de [[irrationale tal]] (tal, der ikke kan opskrives som heltalsbrøker, så som [[pi (tal)|π]] og ''[[e (tal)|e]]'')
518

redigeringer