Wavelet-transformation

Indenfor matematik er en wavelet-række en repræsentation af en kvadratisk integrabel (reel- eller kompleks-værdi) funktion af en bestemt ortonormal række genereret af en wavelet. Denne artikel viser en formel, matematisk definition af en ortonormal wavelet og af den integrale wavelet-transformation også kaldet den integrale wavelet-afbildning.

1D-Wavelets af typen Daubechies-4. Den blå er Wavelet-skaleringsfunktionen - og den røde er den "standard" Wavelet-funktionen.
1D-Wavelets af typen Daubechies-4 i frekvensfunktionsrummet. Her ses det Wavelet-skaleringsfunktionen har flest lavfrekvente frekvenser (blå) - og at den røde "standard" Wavelet-funktion har flest højfrekvente frekvenser.
Et eksempel på en 2D diskret wavelet-transformation som anvendes i billedformatet JPEG2000. Gråtonerne er Wavelet-koefficienter.
2D-Wavelet-koefficienter typisk vist som gråtoner. For hver kvadrat "niveau" (Ø, SØ, S) man går - går man også en Wavelet-koefficient skalaniveau op eller ned - niveauet er definitionsafhængigt - nogle øger den ved Wavelet-dilation og andre lader den falde. Kvadratet mærket "DC" er minimum én eller flere Wavelet-skaleringsfunktions-koefficienter.

Formel definitionRediger

En funktion   kaldes for en ortonormal wavelet hvis den kan anvendes til at definere et Hilbert-basis, som er en fuldstændigt ortonormalt system, for Hilbertrummet   af kvadratisk integrable funktioner. Hilbert basen bliver konstrueret som familien af funktioner   ved hjælp af dyadiske translationer og dilationer af  ,

 

for heltal  . Denne familie er et ortonormalt system hvis det er ortonormalt under det indre produkt

 

hvor   er Kroneckers delta og   er det standard indre produkt    Fuldstændigskravet er at enhver funktion   kan ekspanderes i basis som

 

med rækkekonvergensforstået som værende normkonvergens. Sådan en funktionsrepræsentation f er kendt som en wavelet-række. Dette medfører at en ortonormal wavelet er selv-dual.

Wavelet-transformationRediger

Den integrale wavelet-transformation eller integrale wavelet-afbildning er integraltransformationen defineret ved

 

Wavelet-koefficienterne   er så givet ved

 

Her er,   kaldet den binære dilation eller dyadiske dilation, og   er den binære eller dyadiske position.

Wavelet-kompressionRediger

Wavelet-kompression er en form for datakompression der er velegnet til billedkompression (nogle gange også videokompression og audiokompression). Kendte implementationer er JPEG 2000, DjVu og ECW for enkelt billeder, REDCODE, CineForm, BBC's Dirac, og Ogg Tarkin for video. Målet er at gemme billeddata på så lidt plads som muligt i en fil. Wavelet-kompression kan enten være tabsfri eller ikke-tabsfri.[1]

Se ogsåRediger

Kilder/referencerRediger

  • Chui, Charles K. (1992). An Introduction to Wavelets. San Diego: Academic Press. ISBN 0-12-174584-8. 
  1. ^ JPEG 2000, for eksempel, kan man anvende 5/3-wavelet til tabsfri (reversibel) transformation og en 9/7-wavelet for ikke-tabsfri (irreversibel) transformation.

Eksterne henvisningerRediger

Wikimedia Commons har medier relateret til: