Et talsystem eller et talnotationssystem er et system til at repræsentere matematiske tal med.

Et ciffer er et taltegn. F.eks. består ciffernavnet "34" af to cifre "3" og "4". Det samme kan skrives med andre taltegn: "XXXIV", som består af ciffernavnene "X" (10), "I" (1) og "V" (5).

Bemærk at et ciffernavn kun er en repræsentation for det matematiske tal.

Antal er betegnelser for resultater af forskellige optællinger. Nogle antal har navne, f.eks. dusin = 12, snes = 20, skok = 60, ol = 80. De tre sidste navne viser, at vi (og franskmændene og de keltiske folk) endnu tæller i 20-tal systemet, hvilket kan være et levn fra før indoeuropæerne kom hertil for ca. 4800 år siden. Indoeuropæerne brugte 10-talsystemet, som nu stort set er enerådende i Europa.

Indholdsfortegnelse

Eksempler på positionelle talnotationssystemerRediger

At et talsystem er positionelt betyder, at cifrenes værdi skal ganges med talsystemets grundtal opløftet til den potens, som modsvarer cifrets position, idet der startes med position 0. 12345 betyder i 10-talsystemet altså 1x10000 + 2x1000 + 3x100 + 4x10 + 5x1 og ikke 1+2+3+4+5. Det er i princippet muligt at bruge ligeså store grundtal, som det er muligt, at man kan lære sig rækkefølgen på talsymbolerne. De mulige cifferværdier løber fra 0 til T-1, hvor T er talsystemets grundtal.

Generelt grundtalRediger

I et positionelt system angives et tal på formen

 ,

hvor   er det  'te ciffer. Hvis   er talsystemets grundtal, udregnes udtrykket som

 .

Det positionelle system kan også anvende negative eksponenter of grundtallet i den mere generelle form

 ,

der udregnes som

 .

Grundtal 10Rediger

Det arabiske talsystem også kendt som titalsystemet eller decimalsystemet, anvendes i det meste af verden. Tyske[1], engelske, finske, kinesiske, slaviske og latinske talord er decimale. Det danske talord fyrretyve er afledt af det gammeldanske fyritiughu, som betyder '4 tiere'.[2]

Grundtal 2Rediger

Det binære talsystem (Anvendes ved design af integrerede kredsløb til mikroprocessorer og andet indenfor digital elektronik).

Grundtal 60Rediger

Seksagesimale talsystem – Se også Babyloniske tal.


Grundtal 6Rediger

Ndom fra Ny Guinea er et 6-talssystem.[3]

Grundtal 8Rediger

Oktale talsystem (Anvendtes tidligere og måske stadigvæk ved computerprogrammering som kortform for det binære talsystem).

Grundtal 16Rediger

Hexadecimale talsystem (Anvendes ved computerprogrammering som kortform for det binære talsystem).

Grundtal 20Rediger

  • Vigesimal-talsystem eller Tyvetalssystemet. (Blev anvendt hos mayaerne og aztekerne – sikkert også i deres formodede abacus: nepohualtzintzin). Mayanske talord: Tzotzil[4]. Aztekiske talord: Nahuatl[5] Bemærk at en del af de ældre danske[6] (og baskiske, keltiske og franske) talord bærer præg af at være et vigesimal-system. F.eks. halvtredsindstyve, tresindstyve, halvfjerdsindstyve, firsindstyve og halvfemsindstyve (halvfem=4,5 , sinde[2] betyder gange og 4,5*20=90). Det skal dog også bemærkes at tyve faktisk står for to tiere (oldnordisk twai teyjuz[7]), undtagen i fyrretyve, hvor fyrretyve står for 4 tiere (fra gammeldansk fyritiughu[2][8]).

Ikke-positionelle talnotationssystemerRediger

NoterRediger

Eksterne henvisningerRediger